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Near Infrared Reflectance Spectroscopy (NIRS) has 
been used to analyze a variety of agricultural commod- 
ities. Many times the success or lack of it has been due 
to inadequate computational capabilities or asking more 
of the instrument than its capabilities. This study showed 
that for the development of multiple analytical methods 
by Near Infrared Reflectance Spectroscopy (NIRS) a 
sophisticated instrument computer software system 
can perform multiple analyses and that different data 
treatments were required for each constituent. In this 
case a scanning monochromator with a digital mini 
computer and the USDA/Pennsylvania State University 
software system could easily be calibrated to deter- 
mine simultaneously the percentages of moisture, pro  
tein and residual oil in cottonseed meal. High RSQ 
(.98-.99 for all constituents) and low standard errors of 
prediction (SEP} (0.18 moisture, 0.1 oil and 0.34 protein) 
were obtained. Success was due to the acquisition of 
sufficient data for all three analyses (via the mono- 
chromator) and the use of sufficient computing power 
to obtain an optimized calibration where each constit- 
uent required a different mathematical data treatment. 

The NIRS data were collected with a Pacific Scien- 
tific Model 6350 monochromator and data stored in a 
Digital Equipment  Corporat ion PDP 11/34 
mini-computer. The USDA/Pennsylvania State Uni- 
versity software system was used for spectrometer 
control, data transformation and statistical analysis 
(17) and used as discussed in ARS Handbook 643 (18). 
The approximation of a 19-filter instrument and produc- 
tion of a scatter plot were accomplished with a new 
program called REG 70 (Westerhaus, M.O., and J.S. 
Shenk, personal  communication). The Fourier  
self-deconvolution was accomplished with the University 
of Georgia Scientific Applications Software Package 
on a Digital Equipment Corporation MicroVax II com- 
puter (Carreira, L., personal communication). 

The first set of nine samples was scanned and plots 
of the spectra examined to see if spectral differences 
were present. The set of nine was added to the set of 53 
and the resulting 62 samples used for calibration and 
validation. Of the 62 samples, 47 were used for calibra- 
tion and 15 for validation. The software reserved every 
fourth sample for validation. 

Near infrared reflectance spectroscopy (NIRS) has been 
used to measure protein and moisture in wheat (1-4), 
various compositional parameters in forages (5-12) and 
oil and moisture in sunflowers (13, 14). NIRS measur- 
ements have been made on fixed filter (15), tilting filter 
(7) and monochromator instruments (6, 7, 12, 14). Com- 
putations and data transformations have been made 
wi th  e v e r y t h i n g  from ca lcu la tors  to large 
mini-computers. The capabilities of the spectrometers 
in the above studies ranged from acquiring data from 
as few as six data points to as many as 2,000. The 
question to be answered is, "What  is needed to acquire 
a particular analysis or group of analyses in terms of 
instrumentation and computational capabilities?" 

In this paper cottonseed meal was used as an exam- 
ple to show that the optimal mathematical data treat- 
ment required to obtain a good calibration was differ- 
ent for each constituent (residual oil, moisture and 
protein), and that  some form of scanning instrument 
and at least a microcomputer system to handle data 
computations was necessary. 

RESULTS AND DISCUSSION 

The data in Table 1 are for the first set of nine samples 
which were used to see if sufficient information was 
present in the spectra to conduct all three analyses, 
residual oil {oil) moisture (H20) and protein (CP). I t  
was noted that  sample 9 was the most "different" 
sample in the set. The spectral difference of sample 9 
around 1900-2000 nm probably is due to its high mois- 
ture, CP, and oil content compared to the other sam- 
ples (Table 1). Crossovers usually occur as a result of 
particle size and moisture difference which exhibit dif- 
ferent scatter characteristics (19). In this case the spec- 
t rum of sample 9 appears to exhibit increased scatter 
due to being the finest ground sample, a s  expected 
from its composition. The more finely ground the higher 

TABLE 1 

Percentage Composition of Nine Cottonseed Mea~ Samples 

Sample # H20 CP Oil 

MATERIALS AND METHODS 1 
2 

The samples used in this study were provided by 3 
Ranchers Cotton Oil, Fresno, California. They consisted 4 
of a set of nine and a set of 53 samples of commercially 5 
prepared cottonseed meal. The samples were ground 6 
through a UDY cyclone mill with a 1-mm screen and 7 
packed into sample cups for scanning. Data for the oil, 8 
moisture and crude protein contents of the samples 9 
were provided by Ranchers Cotton Oil and obtained in mean 

STD DEV their laboratory by standard AOAC procedures (16). 

9.7 41.50 
9.6 40.55 
9.6 43.20 
9.7 43.60 
9.5 42.52 
9.6 44.12 
9.5 43.90 
9.5 44.32 
9.7 48.65 
9.6 43.60 
O.08 2.3 

3.1 
3.0 
3.2 
3.4 
3.2 
3.5 
3.8 
3.6 
4.0 
3.4 
0.3 
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FIG. 1. A plot of Log I/R vs wavelength Inm) of the mathematical average spectrum 
of samples with prominent wavelengths that correlate to oil, water (H20) and protein 
(CP) noted on the spectrum. 

the scatter the lower the initial absorbance (20,21}. 
Eventually the significantly higher oil and CP content 
contribute to an overall more intense absorbance spec- 
trum for the sample. The wavelength regions at which 
the constituents usually absorb have been indicated on 
Figure 1, the mean (average} spectrum of the nine-sample 
set. These wavelengths agree with what has been found 
previously (4,14}. The initial calibration with nine sam- 
ples indicated that the three constituents required dif- 
ferent mathematical data treatments and different deriv- 
ative widths to optimize the equations. Moisture and 
oil required a second derivative data treatment {Table 
2), but oil required a much narrower derivative width (8 
nm vs 16 nm]segment). Protein required an even wider 
width (24 nm/segment), but a reasonable fit was obtained 
with unsmoothed data consisting of the logarithm of 
reciprocal reflectance (log l/R). 

Nine samples can give an indication of the potential 
for the measurement of a given constituent by NIRS, 
but are too few for the development of analytical equa- 
tions (22}. The results from Birth (24} showed that  with 
small sample sets I<20), high RSQ could be obtained 
with random noise. 

A second set of 53 samples was obtained and added 
to the original nine samples. The range, mean and 
standard derivation of the resulting data set for H20, 
oil and CP were 4.6-11.1, 1.5-3.8 and 35.9-53.7; 8.1, 2.7 
and 45.1; and 2.2, 0.7 and 5.0 percentage units. Two 
stepwise multiple regression analysis programs, "CAL" 
and "BEST", were used to develop equations. Both 
programs allow one to reserve every ' T ' t h  sample in 
the set for validation of the equations, in this case I=3.  
Table 3 contains the data on errors of calibration and 
prediction obtained from both regression programs. 

Essentially, the results are the same as before; small 
standard error of calibration (SEC) and large RSQ values 
were found. The standard error of performance (SEP) 
for the three constituents also was quite small. The 

TABLE 2 

Mathematical Data Treatments for Expressed Cottonseed Meal 

Math treatment 
Variable SEC R 2 # Terms a (N,D,S,S) b 

Moisture 0.026 .90 2 2, 16, 16, 2 
Oil 0.055 .97 2 2, 8, 8, 2 
Protein 0.122 .99 2 2, 24, 24, 2 
Protein 0.239 .99 2 0, 0, 2, 2 

a# Terms, the number of terms in the regression! equation. 
bWbere N = derivative number, D = derivative segment width in 
nm and S = nm for first and second smoothing function (2 nm = 
no smoothing}. 

slope of actual vs predicted values showed the equation 
to be valid in that a slope of 1.0 would be perfect. There 
was no bias in the equations from program "BEST" 
and essentially none from "CAL." 

The equation developed from the larger sample set 
required wider derivative widths than for the small set. 
The important thing is that all three constituents yielded 
improved results compared to those obtained from the 
logarithm of reciprocal reflectance (log l/R). 

Maddams in 1980 {23} reviewed curve fitting and 
derivative techniques to show their utility and limita- 
tions for enhancing resolution of spectra. Later, Bowley 
et al. (24) and Compton and Maddams (25) looked at 
Fourier Self-Deconvolution (FSDC} and compared it to 
derivative, as developed initially by Kauppiner et al. 
(26,27}. According to these authors, derivative and FSDC 
can be used to resolve individual peaks in complex 
bands. In both resolution techniques spectral resolution 
is obtained at the expense of the signal-to-noise ratio 
(SNR). The FSDC retains the normal absorbance spec- 
tra while the lines narrow and the even derivatives 
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TABLE 3 

Standard Error of Calibration and Prediction for Cottonseed Meal 

Variable/ 
regression Math 
program Sec a RSQ (SEP(c) b R Terms treatment Slope c Bias 

"CAL" 
Moisture .199 .991 .184 .992 1 1, 16, 8, 4 1 .007  -0.035 
Oil .099 .979 .088 .987 2 2, 24, 24, 4 1.019 -0.0004 
Protein .446 .991 .353 .996 1 2, 24, 16, 4 1.029 0.182 

"BEST" 
Moisture .176 .993 .172 .993 3 2, 16, 16, 2 1.019 0.000 
Oil .090 .983 .088 .984 3 2, 16, 4, 4 0.975 0.000 
Protein .352 .994 .343 .995 3 2, 24, 24, 2 0.980 0.000 

aStandard error of calibration. 
bStandard error of performance (corrected for bias}. 
CSlope of laboratory calibration data vs NIRS data. 

0.08- 
C O T T O M S E E D  MEAL 

0 . 0 6 -  

0 . 0 4 -  

X ~ 0.02" 

0 
J 0. 

W 

-o - 0 .  OZ - 
oJ 

- 0 . 0 4  - 

-0.06- 

J 

-0.0B i - - T -  i ..... i - i 
1000 IE08 1480 1600 1808 E000 

WAVELENGTH (nm) 

2200 
I t 

2400 ZGOB 

FIG. 2. A plot of the second derivative of Log IIR vs wavelength (nm) of the average 
spectrum in Fig. I. The wavelength minimum can he compared to the maximum in 
Fig. I to show where the correlation with composition exists. 

either give negative peaks  (second derivative) or normal  
absorpt ion peaks  (fourth derivative) with side lobes. 

Figure 2 is the second der ivat ive of the average  of 
the  small  cot tonseed meal  spectral  file with a medium 
24-nm derivat ive gap. Figure 3 shows the log 1/R cotton- 
seed-meal spectral  (3A) and the log 1/R spec t ra  wi th  
the baseline removed by  rat ional  interpolation (3B>. 
This  baseline slope removal  is necessary to properly 
take  the inverse Fourier t ransform.  Figure 4A and 4B 
are the log 1/R (baseline removed) and the super imposed 
FSDC of the cot tonseed meal. The second der ivat ive 
minima and the FSDC peaks  should correspond to the 
wavelengths  chosen by  the s ta t i s t ics  for the cal ibrat ion 
equations.  Table  4 shows tha t  indeed they  do. The peak  

a t  2298 nm is very  likely the CH s t re tch  of both  the off 
fract ion and any cellulose in the sample. 

Another  way  of assess ing the ut i l i ty of the more 
complex da ta  t r ea tmen t s  is to approx imate  a 19-filter 
ins t rument .  This can be done by  using a s t andard  set  
of wavelengths  (28) wi th  the cal ibrat ion da t a  and per- 
forming a s tepwise mult iple regression as we would 
with  the monochromator  data .  In  this case we have 
only 19 wavelength  intensit ies ins tead of 700 and use 
only the logar i thm of reciprocal reflectance as a da ta  
t r ea tment .  The resul ts  are in Table 5. Basically, the 
SEC ' s  are a lmost  twice as large, the RSQ lower, and 
five t e rms  are required as compared  wi th  one or two as 
is the  case in Table  3. The " sca t t e r  p lo t"  (Fig. 5} shows 

JAOCS, Vol. 65, no. 5 (May 1988) 



(gg6[ AC>IAI) g 'ou "cj9 'lOA 'SOOVr 

• uos.vmdmo~ ~o] po]eadaJ ~g "~!A s! lit "~!A "uoDnloAuoa~o'IIaS ~o.umoA e~ 
~uama~uequa uoDnlosaz qlu~ (mu) q~ffUalaAe~ SA ~[/[ 8oq to ~old e s! V~ '~!,;l "~ "DI~[ 

(wu) H19N373AUM 
0092 00~2 0022 0002 0081 0091 00~ 0021 0001 

I I I I -- I I I I 0I "0- 

/~ -$o "o- 

v 
• 8 o 

i $o"o 

t \ \ 
J // IOI "0 

I 
02 "0 

I 
S2 "0 

OE "0 
7U3W G33SN01103 

0092 
I 

• uoD¢IOd~o~u ! [¢uoD¢z £q poAomo~ 
ouHas¢ q 8u.[doIs oq~ p¢q scq q~!q~ ~[~ "8!e [ q~!~ ~! axadmo~ o~ u~oqs s! pu¢ '(soldmBs 6 
JO o~'eaaAe at D .loj q38UOIOAB~ SA H/I ~o'] "o'!) I "fl!A se am~s oq~ s! Vg a~nS!d "8 "DIA 

C wu) H15N373AUM 

00~'2 0022 0002 0081 009I 00~'~ 0021 

v 

ILL 

7U3W (]33SN01103 

000I 
8 0 

~'0 

2"0 

-E'O 

-~'0 

-S'0 

-9"0 

~'0 

NOIJ~ISOdlAIOD ,~0 NOI&VNI~I~L~t(I ~[0¢I S~IIN 



??2 

F.E. BARTON AND G.C. CAVANAGH 

TABLE 4 

Comparison of Wavelengths (nm) Chosen by Statistical Programs and Peak Assign- 
ments in the Spectral 

Second 
Log 1/R  a FSDC b derivative c Cal/BEST d Vibration e 

1274 1275 
1368 1362 1362 
1438 1430 1436 

1492 1496 1502 
1685 

1706 1706 1705 1714 
1808 1805 

1938 1922 1920 1956 
2058 2055 2062 2076 
2162 2164 2170 2166 
2302 2298 2292 2286 
2342 2350 2350 2326 
2466 2470 2480 2486 

-CH aromatic 
-O-H 1st overtime 
N-H 1st overtime 

Oil CH 1st overtime 

H-OH bend 
C bend 
N-H bend 
CH-stretch comb 
2nd overtime C-H 
Ar-CH stretch 

aLogarithm of reciprocal reflectance, Log 1/R. 
bFourier self-deconvolution. 
CThe second derivative with respect to wavelength of Log 1/R. 
dcal  and Best are two step-wise multiple linear regression programs described in 
USDA Handbook 643 (18). 
eType of vibrational motion typically found at this wavelength. 
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FIG. 5. Fig. 5 is a scatter plot of laboratory- versus NIRS-determined values for oil. 

t he  p r o b l e m  to  be one of precis ion.  A t  t he  lower r e s idua l  
oil levels  (<2%), t he  p rec i s ion  is a l m o s t  one-ha l f  to  
equa l  t h e  a m o u n t  of oil (__0.6%). Th i s  r a i s e s  t he  e r ro r  
of  c a l i b r a t i o n  to  75-100% a t  t h e  lower  leve ls  a v e r a g e d  
w i t h  a m u c h  t i g h t e r  f i t  a t  >4% oil. 

The  conc lus ion  t h a t  r e s u l t s  f rom th i s  s t u d y  is t h a t  
o p t i m a l  e v a l u a t i o n  of  al l  t h r e e  c o n s t i t u e n t s  on  one 
i n s t r u m e n t  r equ i r e s  t h a t  t he  i n s t r u m e n t  be  c a p a b l e  of  
y i e l d i n g  su f f i c ien t  s p e c t r a l  i n f o r m a t i o n  (e.g., mono-  
c h r o m a t o r  or  t i l t i n g  filter} a n d  h a v e  a l a r g e  e n o u g h  
m i c r o c o m p u t e r  to  p e r f o r m  t h e  a p p r o p r i a t e  m a t h e m a t -  
ica l  d a t a  t r e a t m e n t s  a n d  r e g r e s s i o n  ana ly se s .  A f ixed  
f i l t e r  i n s t r u m e n t  cou ld  be  a n d  h a s  been  u s e d  to  a n a l y z e  
for  a n y  one of t h e s e  c o n s t i t u e n t s  o r  m o i s t u r e  a n d  pro-  
t e in  t o g e t h e r ,  b u t  i t  can  g ive  a loss  of  p rec i s ion  a n d  

a c c u r a c y  which  could  cause  some one  n o t  t h o r o u g h l y  
f ami l i a r  w i th  N I R S  to  d r a w  an  e r roneous  conc lus ion  as  
to  t h e  s u i t a b i l i t y  of  N I R S  for a p a r t i c u l a r  ana lys i s .  

TABLE 5 

Approximation of Fixed Filter Calibration 

Variable SEC a RSQ b # Terms c 

Moisture 0.24 .99 5 
Oil 0.19 .92 5 
Protein 0.74 .98 5 

aSEC, Standard error of calibration. 
bRSQ, Squared correlation coefficient. 
c# Terms, number of terms in the resulting regression equation. 
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